
24304: Artificial Intelligence 2025

Final Lab Project: Pacman Contest
Deadline: To be determined

This project counts towards 15% of the grade for this course.
This assignment must be done in groups of 2 students.

1 Introduction

The Eutopia Pacman contest is an activity consisting of a multiplayer capture-the-flag variant of Pacman,
where agents control both Pacman and ghosts in coordinated team-based strategies. Students from dif-
ferent EUTOPIA universities compete with each other through their programmed agents. Currently both
University of Ljubljana, Vrije Universiteit Brussel, and Universitat Pompeu Fabra (UPF) are participating
organizations. UPF is also the tournament organizer, which hosts and run the tournaments in the SNOW
cluster1.
The project is based on the material from the CS188 course Introduction to Artificial Intelligence at
Berkeley2, which was extended for the AI course in 2017 by lecturer Prof. Sebastian Sardina at the Royal
Melbourne Institute of Technology (RMIT University) and Dr. Nir Lipovetzky at University of Melbourne
(UoM)3. UPF has refactored the RMIT and UoM code. All the source code is written in Python.

Figure 1: Berkeley’s Pac-Man environment in action.

The project code is developed in a modular way, so that users can work at different levels depending on
their objective. There are three different modules:

1https://guiesbibtic.upf.edu/recerca/hpc
2http://ai.berkeley.edu/contest.html.
3https://github.com/AI4EDUC/pacman-contest-cluster.

https://guiesbibtic.upf.edu/recerca/hpc
http://ai.berkeley.edu/contest.html
https://github.com/AI4EDUC/pacman-contest-cluster


Agent development : the source code of a participating agent is contained in a github repository. Each
participating team will build a single repository. The Pacman Agent defines a basic template of an
agent behavior.

Local tournament : The (Pacman Contest) module contains the scripts needed to run a custom tourna-
ment locally, independently of the tournaments organized by UPF.

UPF tournament : The Pacman Eutopia is the module used by tournament organizers at UPF. Partici-
pating organizations do not need to contribute to this module.

Currently, the framework supports a running mode based on events. This means that tournaments are run
at UPF according to prespecified dates between the tournament participants. A different mode with results
continuously being updated is left for future versions of the framework. A test run will take place, and
based on the results of the test run, students can make changes before the final run around one week after.

2 Rules of Pacman Capture the Flag

2.1 Layout

The Pacman map is now divided into two halves: blue (right) and red (left). Red agents (which all have
even indices) must defend the red food while trying to eat the blue food. When on the red side, a red
agent is a ghost. When crossing into enemy territory, the agent becomes a Pacman.

2.2 Scoring

As a Pacman eats food dots, those food dots are stored up inside of that Pacman and removed from the
board. When a Pacman returns to his side of the board, he “deposits” the food dots he is carrying, earning
one point per food pellet delivered. Red team scores are positive, while Blue team scores are negative.
If Pacman is eaten by a ghost before reaching his own side of the board, he will explode into a cloud of
food dots that will be deposited back onto the board.

2.3 Eating Pacman

When a Pacman is eaten by an opposing ghost, the Pacman returns to its starting position (as a ghost).
No points are awarded for eating an opponent.

2.4 Power Capsules

If Pacman eats a power capsule, agents on the opposing team become “scared” for the next 40 moves,
or until they are eaten and respawn, whichever comes sooner. Agents that are “scared” are susceptible
while in the form of ghosts (i.e. while on their own team’s side) to being eaten by Pacman. Specifically,
if Pacman collides with a “scared” ghost, Pacman is unaffected and the ghost respawns at its starting
position (no longer in the “scared” state).

2.5 Observations

Agents can only observe an opponent’s configuration (position and direction) if they or their teammate is
within 5 squares (Manhattan distance). In addition, an agent always gets a noisy distance reading for each
agent on the board, which can be used to approximately locate unobserved opponents.

https://github.com/jsego/pacman-agent/tree/3cf7c4575f34acc1887aba1b2061c10ce1289747
https://github.com/jsego/pacman-contest/tree/9ddd7f4f6f8df1564c3dbd80c0c633633e07e02e
https://github.com/jsego/pacman-eutopia


2.6 Winning

A game ends when one team returns all but two of the opponents’ dots. Games are also limited to 1200
agent moves (300 moves per each of the four agents). If this move limit is reached, whichever team has
returned the most food wins. If the score is zero (i.e., tied) this is recorded as a tie game.

2.7 Computation Time

We will run your submissions on the UPF cluster, SNOW. Tournaments will generate many processes that
have to be executed without overloading the system. Therefore, each agent has 1 second to return each
action. Each move which does not return within one second will incur a warning. After three warnings, or
any single move taking more than 3 seconds, the game is forfeit. There will be an initial start-up allowance
of 15 seconds (use the register initial state function). If your agent times out or otherwise throws
an exception, an error message will be present in the log files, which you can download from the results
page.

3 For students

Students need to first download the source code and install the required dependencies.4

3.1 Setting up the agent and contest frameworks

Step by step:

1. Clone the repository to download all the necessary code.
git clone git@github.com:aig-upf/pacman-agent.git

2. Move to the created directory.
cd pacman-agent/

3. Create a virtual environment.
python3.8 -m venv venv

4. Activate the virtual enviroment.
source venv/bin/activate

5. Pull the contest framework.
git submodule update --init --remote

6. Install the contest framework and required python libraries.
cd pacman-contest/

pip install -e .

pip install -r requirements.txt

7. Finally, move to the directory containing the main file (capture.py) to run a match.
cd src/contest/

4Commands expected to be used in an Ubuntu operative system and tested for version Ubuntu 22.04.



3.2 Getting Started

By default, you can run a game with the simple baseline team that the staff has provided:

python capture.py

A wealth of options are available to you:

python capture.py --help

The code provides one sample team called baseline team, contained in a python script named baseline team.py

in src/contest folder. It is chosen by default as both the red and blue team, but as an example of how
to choose teams:

python capture.py -r baseline team -b baseline team

which specifies that the red team -r and the blue team -b are both created from baseline team.py.

Once this last step is working, we can start running games between our custom agents, or between a custom
agent and the baseline team. To do this, we will save our agent’s directory in the src/contest/agents/
folder. Inside this folder we will have our directory, which can have any name. As an example, let’s imagine
that we have two agents, team name 1 and team name 2. Each of these folders contains an agent, in a
script called my team.py. An executable example is provided in the framework:

python capture.py -r agents/team name 1/my team.py -b agents/team name 2/my team.py

We could also compare our agent against the baseline team, by running

python capture.py -r agents/team name 1/my team.py -b baseline team

There is also an option to record the game and some log info by adding the flags --record and --record-log

to the previous command.

python capture.py -r agents/team name 1/my team.py -b baseline team --record --record-log

The previous command will save the data in the following files:

• Log: www/contest default/logs/match 0.log

• Replay: www/contest default/replays/match 0.replay

• Score: www/contest default/scores/match 0.json

Finally, a match can be replayed from a *.replay file. Using the one generated in the previous execution,
we can run it as follows:
python capture.py --replay=www/contest default/replays/match 0.replay



3.3 Building your agent

In the root folder do the following:

1. Create in my team.py a class with the name of your agent that inherits from CaptureAgent, e.g.
class ReflexCaptureAgent(CaptureAgent):

2. In the new class, override the def choose action(self, game state): function to return the
best next action (check the given source code example).

3. (Optional) Add any other functions to the class for reasoning / learning and improving your agents
decision which could also use other code sources in the same folder.

If you want to debug your agent, provide the local route to capture.py, e.g., python capture.py -r

baseline team -b ../../../my team.py for your agent to play against the baseline team.


	Introduction
	Rules of Pacman Capture the Flag
	Layout
	Scoring
	Eating Pacman
	Power Capsules
	Observations
	Winning
	Computation Time

	For students
	Setting up the agent and contest frameworks
	Getting Started
	Building your agent


